viernes, 24 de junio de 2016

DETECTORES DE RADIACION SOLIDOS Y GASEOSOS


DETECTORES DE RADIACION

DETECTORES GASEOSOS

Los detectores de radiaciones ionizantes pueden clasificarse en detectores inmediatos o retardados, según que la información suministrada al observador sea instantánea o diferida con respecto al momento en que se procede a la detección. También, pueden clasificarse en detectores por ionización o por excitación, según el tipo de fenómeno físico involucrado en el proceso de conversión de la energía del campo en una señal inteligible. Los detectores gaseosos están básicamente constituidos por un recinto conteniendo un gas, sometido a un campo eléctrico producido por una diferencia de potencial aplicada entre dos electrodos (uno de los cuales cumple, en general, la función de contener ese gas).

CÁMARAS DE IONIZACIÓN

Si la diferencia de potencial aplicada a los electrodos de un detector gaseoso es nula, también será nula la intensidad de campo eléctrico en el interior del recinto, con lo que los iones producidos por la interacción de las partículas ionizantes se encontrarán sometidos sólo a la atracción mutua debida al distinto signo de sus cargas, recombinándose para volver a constituir átomos o moléculas neutras (ver figura 2). Cuando la diferencia de potencial deja de ser nula, el campo eléctrico existente atrae a los iones hacia los electrodos correspondientes con una fuerza proporcional a la intensidad de campo eléctrico y a la carga eléctrica de un ion.

Las corrientes generadas en las cámaras de ionización suelen ser de muy bajo valor, del orden de 10-12 amperes, lo que impone precauciones especiales para su medición.

CONTADORES GEIGER-MÜLLER.

 Si se continúa aumentando la diferencia de potencial entre electrodos de un detector gaseoso más allá de los valores que corresponden al rango de funcionamiento como contador proporcional, el factor de multiplicación de iones deja de ser lineal con la tensión aplicada. Ello se debe a que al ser la masa de los iones positivos mucho mayor que la de los electrones, estos se desplazan a menor velocidad que aquellos, llegando a constituir una carga espacial que altera la forma del campo eléctrico dentro del detector y, por ende, la linealidad. Si se aumenta aún más la diferencia de potencial, el efecto de la carga espacial resulta dominante frente a la diferencia de potencial exterior. Cuando se llega a esta situación, cesa de aumentar la multiplicación y la amplitud del impulso resulta máxima. Esta región de operación del detector gaseoso recibe el nombre de Geiger – Müller.

La principal característica de un contador Geiger-Müller es que la amplitud de la señal eléctrica es independiente de la energía y naturaleza de la partícula, resultando la de mayor amplitud obtenible con la configuración del detector gaseoso utilizado.

TIEMPO MUERTO DE UN CONTADOR GEIGER-MÜLLER.

 Luego de producida la interacción de una partícula ionizante con el contador, se produce en su interior una avalancha de partículas cargadas que da lugar a la aparición de una carga espacial. Debido a la alta concentración de iones positivos en las proximidades del ánodo, esta carga espacial distorsiona el campo eléctrico interior del detector e impide la aparición de nuevas avalanchas debidas a posteriores interacciones. Esta situación se prolonga hasta tanto se hayan recolectado los iones positivos y fija el tiempo durante el cual, después de una primera interacción, el detector queda inhabilitado para responder a posteriores interacciones. No obstante, antes de que todos los iones positivos hayan alcanzado el cátodo, puede detectarse una segunda partícula, aunque dando lugar a un impulso más pequeño por no haberse restablecido todavía en su totalidad la magnitud del campo eléctrico en las proximidades del ánodo. El tiempo necesario después de un impulso de máxima amplitud hasta otro de amplitud detectable se denomina tiempo muerto , y el requerido para que el contador pueda entregar otro impulso de amplitud máxima se denomina tiempo de recuperación

DETECTORES DE ESTADO SOLIDO CONCEPTOS BASICOS SOBRE SEMICONDUCTORES.

Las energías de los electrones de un átomo aislado poseen, de acuerdo con los postulados de la Mecánica Cuántica, valores discretos. Existe, en consecuencia, un número finito de niveles de energía tales, que sólo pueden ser ocupados por electrones cuyas energías sean iguales a las de los niveles en cuestión (los que quedan definidos por cuatro números cuánticos). Además, por el principio de exclusión de Pauli, dichos niveles son diferentes entre sí. En el caso de los gases, los átomos están tan alejados entre sí que se los puede considerar aislados y aplicarles, en consecuencia, los conceptos mencionados.

DETECTORES SEMICONDUCTORES.

El principio de funcionamiento de los detectores semiconductores puede asemejarse al de la cámara de ionización, donde el medio ionizable, en vez de un gas, consiste en un semiconductor (Ge o Si) de alta resistividad. La alta resistividad se alcanza mediante la formación de zonas del material exentas de portadores libres (zonas de carga espacial), las que se logran mediante métodos que son característicos de los diversos semiconductores.

DETECTORES TERMOLUMINISCENTES

Los detectores termoluminiscentes (TLD, en inglés) son detectores pasivos e integradores que permiten realizar la determinación de dosis y discriminar las componentes de distintos campos de radiación. El fundamento de su uso está basado en el fenómeno de luminiscencia.

DETECTORES DE CENTELLEO CONCEPTOS BASICOS SOBRE CENTELLADORES

La detección de las radiaciones ionizantes a partir de los destellos luminosos que éstas producen en ciertos materiales, es uno de los métodos más antiguos, pero continúa siendo aún muy utilizado en contaje y en espectrometría. Cuando una partícula ionizante incide en un material, puede interactuar de acuerdo al mecanismo que corresponda al tipo de partículas, a su energía y al material de que se trate, produciendo partículas cargadas que se mueven en su interior. En ciertos materiales, denominados centelladores, pequeña fracción de la energía cinética de las partículas secundarias es convertida en energía luminosa; el resto se transfiere al medio como calor o como vibraciones de su red cristalina. La fracción de la energía que se convierte en luz (definida como eficiencia de centelleo) depende, para un dado centellador, de la naturaleza de la partícula y de su energía. En algunos casos, la eficiencia puede ser independiente de la energía de la partícula, permitiendo una proporcionalidad directa entre la intensidad del impulso luminoso y la energía.

DETECTORES DE EMULSION FOTOGRAFICA EMULSION FOTOGRAFICA - EFECTO DE LA RADIACION.

El material sensible a la radiación ionizante, denominado emulsión fotográfica, está constituido de granos de bromuro de plata, BrAg, de dimensiones microscópicas y distribuidos en un medio gelatinoso el cual está a su vez depositado como una capa de espesor muy delgado sobre un soporte traslúcido, por ejemplo celuloide o vidrio.

Los electrones liberados por la radiación neutralizan al ion Ag+ transformándolo en plata metálica, lo que constituye la formación de la denominada imagen latente por pocos átomos de plata de un grano (que típicamente tiene del orden de 1010 Ag+) La cantidad de granos de bromuro que han sufrido esta transformación, así como el número de iones plata convertidos en cada grano, es función de la dosis absorbida.

No hay comentarios.:

Publicar un comentario